Synthesis of Reversible Circuits for Large Reversible Functions

نویسندگان

  • Nouraddin Alhagi
  • Maher Hawash
  • Marek Perkowski
چکیده

This paper presents a new algorithm MP (multiple pass) to synthesize large reversible binary circuits without ancilla bits. The well-known MMD algorithm for synthesis of reversible circuits requires to store a truth table (or a Reed-Muller RM transform) as a 2n vector to represent a reversible function of n variables. This representation prohibits synthesis of large functions. However, in MP we do not store such an exponentially growing data structure. The values of minterms are calculated in MP dynamically, one-by-one, from a set of logic equations that specify the reversible circuit to be designed. This allows for synthesis of large scale reversible circuits (30-bits), which is not possible with any existing algorithm. In addition, our unique multi-pass approach where the circuit is synthesized with various, yet specific, minterm orders yields quasi-optimal solution. The algorithm returns a description of the quasi-optimal circuit with respect to gate count or to its “quantum cost”. Although the synthesis process in MP is relatively slower, the solution is found in real-time for smaller circuits of 8 bits or less.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing of Testable Reversible QCA Circuits Using a New Reversible MUX 2×1

Recently testing of Quantum-dot Cellular Automata (QCA) Circuits has attracted a lot of attention. In this paper, QCA is investigated for testable implementations of reversible logic. To amplify testability in Reversible QCA circuits, a test method regarding to Built In Self Test technique is developed for detecting all simulated defects. A new Reversible QCA MUX 2×1 desig...

متن کامل

Designing of Testable Reversible QCA Circuits Using a New Reversible MUX 2×1

Recently testing of Quantum-dot Cellular Automata (QCA) Circuits has attracted a lot of attention. In this paper, QCA is investigated for testable implementations of reversible logic. To amplify testability in Reversible QCA circuits, a test method regarding to Built In Self Test technique is developed for detecting all simulated defects. A new Reversible QCA MUX 2×1 desig...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

Evolutionary QCA Fault-Tolerant Reversible Full Adder

Today, the use of CMOS technology for the manufacture of electronic ICs has faced many limitations. Many alternatives to CMOS technology are offered and made every day. Quantum-dot cellular automata (QCA) is one of the most widely used. QCA gates and circuits have many advantages including small size, low power consumption and high speed. On the other hand, using special digital gates called re...

متن کامل

Performance Analysis of Reversible Sequential Circuits Based on Carbon NanoTube Field Effect Transistors (CNTFETs)

This study presents the importance of reversible logic in designing of high performance and low power consumption digital circuits. In our research, the various forms of sequential reversible circuits such as D, T, SR and JK flip-flops are investigated based on carbon nanotube field-effect transistors. All reversible flip-flops are simulated in two voltages, 0.3 and 0.5 Volt. Our results show t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010